Digital E-Dashboard for Sterilization Room: Enhancing Monitoring and Control Systems for Health

Abdul Haris Kuspranoto1, Zulkhairi2, Muhammad Fa’iz Alfath3
1) Electromedical Engineering, Politeknik Bina Trada Semarang, Sambiroto Raya No.64-D, Sambiroto, Kec. Tembalang, Kota Semarang, Indonesia 50276
2) Teknik Elektro, Fakultas Teknologi Informasi, Universitas Nahdlatul Ulama Yogyakarta. Jl. Lowanu No.47 Sorosutan, Umbulharjo, Yogyakarta
3) Sekolah Tinggi Teknologi Kedirgantaraan, Jl. Parangtritis No.KM.4,5, Druwo, Bangunharjo, Sewon, Bantul, Daerah Istimewa Yogyakarta 55143

Corresponding Author: abdulhariskuspranoto@polbitrada.ac.id

Abstract
Effective sterilization is crucial in healthcare settings to prevent healthcare-associated infections (HAIs) and ensure patient safety. Traditional methods of monitoring sterilization environments often involve manual checks and lack real-time data, leading to potential inefficiencies and risks. This paper presents the development and implementation of a Digital E Dashboard designed to enhance the monitoring and control of sterilization rooms. The system integrates an ESP32 microcontroller with various sensors to continuously monitor critical parameters such as temperature, humidity, and UV light intensity. The ESP32 microcontroller serves as the core component, collecting real-time sensor data and transmitting it to a cloud server for storage and further analysis. A web-based user interface provides an intuitive dashboard for healthcare staff, offering real-time visualization of sterilization conditions, historical data analysis, and customizable alert settings. Over an eight-week testing period, the system demonstrated high reliability and accuracy, maintaining optimal sterilization conditions and providing timely alerts for any deviations. Implementing the Digital E Dashboard resulted in significant improvements in workflow efficiency and sterilization process reliability. The system's ability to provide real-time data and automated alerts reduced the need for manual monitoring and allowed for prompt corrective actions, minimizing the risk of HAIs. The results, summarized in a detailed table, showed that the average temperature was consistently maintained within the optimal range of 60-80°C, humidity levels were kept between 30-50%, and UV light intensity was monitored effectively with minimal deviations. Feedback from healthcare staff indicated that the dashboard was user-friendly and significantly enhanced their ability to monitor and control the sterilization environment effectively. While the system proved successful, challenges such as sensor calibration, network connectivity, and user training were encountered. Future developments will focus on integrating additional sensors, enhancing network resilience, and incorporating advanced data analytics for predictive insights. The Digital E Dashboard represents a significant step forward in leveraging modern technology to improve sterilization practices in healthcare settings, ultimately contributing to better patient outcomes and safety.

Keywords: Sterilization Room, Monitoring and Control System, Healthcare-Associated Infections (HAIs), Digital E Dashboard, Healthcare Technology

Introduction
The sterilization process is a critical component in maintaining hygiene and safety standards within healthcare facilities. Effective sterilization ensures that medical instruments and environments are free from harmful pathogens, thereby preventing healthcare-associated infections (HAIs). Traditional methods of monitoring sterilization processes often involve manual checks and log entries, which can be prone to human error and inefficiencies. As healthcare systems advance, there is an increasing need for more reliable and automated solutions to monitor and control sterilization procedures(1)(2).

In response to these challenges, this study introduces a Digital E Dashboard specifically designed for sterilization rooms. This advanced system integrates modern technologies to provide real-time monitoring and control, enhancing the reliability and efficiency of the sterilization process. The Digital E Dashboard leverages IoT (Internet of Things) sensors, data analytics, and user-friendly interfaces to offer comprehensive oversight and actionable insights(3).

The primary objective of this study is to develop and evaluate the efficacy of the Digital E
Dashboard in improving the sterilization process. By automating data collection and providing real-time alerts, the system aims to minimize human error, ensure compliance with health regulations, and ultimately enhance patient safety. This paper discusses the design, implementation, and performance of the Digital E Dashboard, demonstrating its potential to transform sterilization practices in healthcare settings(4).

The importance of sterilization in healthcare has been well-documented in the literature. According to Rutala and Weber (2016)(5), effective sterilization methods are paramount in preventing healthcare-associated infections (HAIs), which affect millions of patients globally each year. Traditional sterilization methods, while effective, often rely heavily on manual processes for monitoring and recording data. This reliance can lead to human errors and inconsistencies, as noted by Alvarado (2009), who emphasized the need for automated solutions to enhance reliability and efficiency in sterilization procedures(6).

Recent advancements in digital technology have paved the way for innovative solutions in healthcare. The integration of IoT (Internet of Things) in medical settings has shown significant promise in improving operational efficiencies and patient outcomes(7). For instance, Zhang et al. (2020) demonstrated that IoT-enabled systems could provide real-time monitoring and data analytics, significantly reducing the incidence of errors in various medical applications. Similarly, a study by Smith et al. (2018) highlighted the benefits of digital dashboards in healthcare, particularly in providing real-time data visualization and improving decision-making processes(8).

However, the application of digital dashboards specifically for sterilization room monitoring remains underexplored. While some studies have investigated the use of digital systems in broader healthcare contexts, there is a notable gap in research focusing on the development and implementation of specialized dashboards for sterilization rooms. Most existing solutions are either too generic or lack the integration needed for comprehensive monitoring and control of sterilization processes(9)(10).

This study aims to address these gaps by developing a dedicated Digital E Dashboard for sterilization rooms. By leveraging IoT sensors and advanced data analytics, the proposed system offers real-time monitoring, automated data collection, and alert functionalities tailored to the unique requirements of sterilization procedures. This approach builds on the foundational work of previous researchers while addressing the specific needs of sterilization room environments, providing a novel contribution to the field of healthcare technology(4)(11)(12).

Methodology
This research involves the development and implementation of a Digital E Dashboard designed to enhance the monitoring and control of sterilization rooms. The system architecture is built around the ESP32 microcontroller, which serves as the core component for data acquisition, processing, and communication(13).

1. System Design
The Digital E Dashboard integrates several key components:

a. **Microcontroller Unit**: The ESP32 microcontroller is chosen for its robust features, including Wi-Fi and Bluetooth connectivity, which facilitate real-time data transmission and remote monitoring.

b. **Sensors**: Various sensors are deployed to monitor critical parameters such as temperature, humidity, and UV light intensity within the sterilization room. These sensors are interfaced with the ESP32 to ensure accurate and timely data collection.

c. **Data Processing**: The ESP32 processes the sensor data and uses predefined algorithms to analyze the sterilization conditions. This processing ensures that any deviations from the optimal conditions are detected immediately.

d. **User Interface**: The data collected by the ESP32 is transmitted to a cloud server, where it is visualized on a web-based dashboard. The dashboard provides real-time updates, historical data analysis, and alerts for any anomalies detected during the sterilization process(14)(15).

The block diagram for the Digital E Dashboard system design consists of several main components: Sensors, ESP32 Microcontroller, Wi-Fi/Bluetooth Module, Cloud Server, and Web-Based User Interface. Each of these components plays a crucial role in ensuring the system's functionality and reliability(16). The block diagram shown in the Figure 1.
Implementation

The implementation phase involves the following steps:

Sensor Integration: Sensors are calibrated and connected to the ESP32 microcontroller. This setup is tested in a controlled environment to ensure accurate data readings.

Software Development: Firmware for the ESP32 is developed using Arduino IDE. The software includes modules for sensor data acquisition, processing algorithms, and communication protocols.

Dashboard Development: A web-based dashboard is developed using HTML, CSS, and JavaScript. The dashboard communicates with the cloud server to retrieve and display real-time data. The user interface is designed to be intuitive, providing easy access to critical information and alerts.

Testing and Validation: The complete system is installed in a sterilization room and tested over a period of several weeks. Data collected during this period is analyzed to evaluate the system's performance in real-world conditions. Key metrics include response time, accuracy of data readings, and the effectiveness of the alert mechanisms.

Preliminary testing indicates that the Digital E Dashboard successfully monitors and controls the sterilization room environment. The system provides real-time data with high accuracy, and the alert mechanisms effectively notify users of any deviations from optimal conditions. The integration of the ESP32 microcontroller has proven to be efficient and reliable, demonstrating the potential of this technology to enhance sterilization processes in healthcare settings.

Result

Creating a User Interface (UI) and User Experience (UX) design involves several key components to ensure the system is user-friendly, intuitive, and effective for its intended purpose. Below is a description of the UI/UX design for the Digital E Dashboard system, along with a textual and graphical representation.

1. Description of UI/UX Design
The UI/UX design of the Digital E Dashboard aims to provide healthcare staff with an easy-to-use interface that offers real-time data visualization, historical data analysis, and customizable alerts. The design focuses on clarity, accessibility, and responsiveness.

Dashboard Overview: Displays key metrics such as temperature, humidity, and UV light intensity.

Historical Data Analysis: Provides access to historical data with customizable date ranges. Produces interactive graphs and charts to analyze trends over time. Other function to export options for generating reports.

Alert Management: Customizable alert settings for different parameters. It can visual and auditory alerts for any deviations from optimal conditions. The log of all alerts with timestamps and status updates.

Settings and Configuration:
Options to configure sensor parameters, network settings, and user preferences. User management for adding/removing users and setting access levels. For configuration create some system diagnostics and maintenance tools. Representation of this UI component can be shown in the Figure2.
2. System Performance

The Digital E Dashboard was evaluated over an eight-week period to assess its effectiveness in monitoring and controlling the sterilization room environment. The system's performance was measured based on key parameters such as temperature, humidity, and UV light intensity. The following Table summarizes the data collected during the testing period:

<table>
<thead>
<tr>
<th>Week</th>
<th>AVG Temp</th>
<th>AVG Dev.</th>
<th>AVG Hum</th>
<th>AVG Hum Dev</th>
<th>AVG UV Light</th>
<th>AVG UV Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>2</td>
<td>40</td>
<td>1</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>1</td>
<td>42</td>
<td>2</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>3</td>
<td>39</td>
<td>1</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>1</td>
<td>41</td>
<td>0</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>2</td>
<td>43</td>
<td>2</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>1</td>
<td>42</td>
<td>1</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>

Temperature Control: the average temperature was maintained within the optimal range of 20-25°C throughout the testing period. The maximum deviation observed was 3°C, which was promptly corrected using the alert system. Humidity Levels: The average humidity remained within the desired range of 30-50%, with minimal deviations. These deviations were quickly identified and addressed, ensuring the effectiveness of the sterilization process. The UV light intensity was consistently monitored to ensure it met the required levels for effective sterilization. The system detected minor deviations, which were corrected to maintain optimal conditions.

1. Alert System Performance

The alert system effectively notified users of any deviations in the monitored parameters. On average, alerts were generated within 5 seconds of detecting a deviation, allowing for prompt corrective actions. This responsiveness contributed significantly to maintaining the optimal conditions required for effective sterilization.

2. User Feedback

Healthcare staff provided positive feedback on the Digital E Dashboard’s usability and efficiency. They highlighted the ease of monitoring through the web-based dashboard and appreciated the real-time alerts, which reduced the need for manual checks and enhanced overall operational efficiency.

The results from the eight-week testing period demonstrate that the Digital E Dashboard is a reliable and effective tool for monitoring and controlling the sterilization room environment. The integration of the ESP32 microcontroller and advanced data analytics has significantly improved the efficiency and accuracy of the sterilization process, providing a robust solution for healthcare settings.

3. Temperature Monitoring

The temperature monitoring graph presents a detailed overview of the temperature fluctuations within the sterilization room over an 8-hour period, from 00:00 to 07:00. Each data point on the graph represents the temperature recorded at a specific time, providing a clear visual representation of the room's thermal conditions. Temperature graph as in Figure 3.
The temperature data fluctuates between 21°C and 25°C, remaining within the optimal sterilization range of 20-25°C. Such consistency is crucial for effective sterilization, ensuring that the conditions remain ideal for killing pathogens and maintaining a sterile environment. The temperature monitoring graph provides valuable insights into the thermal conditions of the sterilization room. The data shows that the temperature remains within the optimal range, ensuring effective sterilization. Minor fluctuations are promptly addressed through alerts, highlighting the importance of real-time monitoring in maintaining a sterile environment. This consistent monitoring and control are critical for healthcare settings to ensure patient safety and prevent healthcare-associated infections (HAIs).

4. Humidity Monitoring

The humidity monitoring graph provides a comprehensive view of the humidity levels in the sterilization room over an 8-hour period, from 00:00 to 07:00. Each point on the graph represents the humidity percentage recorded at a specific time, offering a clear visualization of the room's humidity conditions. Humidity graph as in Figure 4.

![Figure 4. Graphical Representation of Humidity](image)

The humidity data fluctuates between 39% and 43%, maintaining an average of around 41%. This range is crucial for the sterilization process as both excessively high and low humidity can affect the efficacy of sterilization and the integrity of sterilized materials. The humidity monitoring graph illustrates the critical role of maintaining stable humidity levels in the sterilization room. The data shows that the humidity stays within a narrow, optimal range, essential for effective sterilization. Minor fluctuations are managed, indicating the efficacy of the monitoring and control system. Real-time data visualization and prompt corrective actions ensure that the sterilization environment remains conducive to preventing healthcare-associated infections (HAIs) and ensuring patient safety.

5. UV Light Intensity Monitoring

The UV light intensity monitoring graph provides a detailed depiction of the intensity levels of UV light within the sterilization room over an 8-hour period, from 00:00 to 07:00. Each bar represents the UV light intensity measured at specific times, illustrating how this critical parameter fluctuates throughout the monitoring period. The UV light intensity graph as in Figure 5.

![Figure 5. Graphical Representation of UV Light Intensity](image)

The UV light intensity monitoring graph underscores the importance of stable and consistent UV light levels in the sterilization room. The data indicates that the intensity remains within the optimal range, essential for effective sterilization. Minor fluctuations are managed through real-time monitoring, ensuring that any deviations are promptly corrected. This consistency in UV light intensity is critical for maintaining a sterile environment, thereby enhancing patient safety and preventing HAIs.

Discussion

The development and implementation of the Digital E Dashboard for the sterilization room have shown promising results, highlighting several key benefits and areas for further improvement. This section discusses the implications of the findings, the challenges encountered, and the potential future directions for this technology.

Implications for Healthcare Facilities

The Digital E Dashboard significantly enhances the monitoring and control of sterilization processes...
within healthcare facilities. By providing real-time data on critical parameters such as temperature, humidity, and UV light intensity, the system ensures that sterilization conditions are maintained consistently within optimal ranges. This reduces the risk of healthcare-associated infections (HAIs) and improves overall patient safety. The automated alerts and data logging features also alleviate the burden of manual monitoring, allowing healthcare staff to focus on other essential tasks.

System Performance and Reliability
The results from the eight-week testing period indicate that the system is reliable and responsive. The ESP32 microcontroller proved effective in handling data acquisition and processing, while the cloud-based infrastructure ensured secure and scalable data storage. The web-based dashboard provided an intuitive and accessible interface for users, facilitating easy monitoring and quick response to any deviations. The minimal deviations observed in temperature, humidity, and UV light intensity were promptly addressed, demonstrating the system's capability to maintain optimal sterilization conditions.

Challenges and Limitations
Despite its success, the implementation of the Digital E Dashboard faced several challenges. Sensor calibration and integration were critical to ensure accurate data collection, and any discrepancies in sensor readings had to be promptly corrected. The reliance on Wi-Fi connectivity for real-time data transmission posed potential issues in areas with unstable internet connections. Additionally, user training was essential to ensure that healthcare staff could effectively use the system and respond to alerts.

Future Directions
Future developments should focus on enhancing the system's robustness and expanding its capabilities. Integrating additional sensors could provide a more comprehensive monitoring solution, covering other critical parameters relevant to sterilization. Improving the system's resilience to network interruptions through the use of local data storage and offline capabilities would enhance reliability. Additionally, incorporating advanced data analytics and machine learning algorithms could provide predictive insights, further optimizing the sterilization process and preventing potential issues before they arise.

Conclusion
The implementation of the Digital E Dashboard for the sterilization room has demonstrated significant effectiveness in monitoring and controlling key environmental parameters such as temperature, humidity, and UV light intensity. The real-time data visualization and historical analysis features provide healthcare staff with the necessary tools to maintain optimal conditions for sterilization. The system's ability to alert staff to any deviations from the desired ranges ensures prompt corrective actions, thus maintaining the integrity of the sterilization process.

The temperature monitoring consistently stayed within the optimal range of 20-25°C, indicating robust control mechanisms and reliable sensor performance. The humidity levels remained stable around 41%, crucial for preventing the adverse effects of excessive dryness or condensation. The UV light intensity was maintained within the required range, ensuring effective pathogen inactivation without compromising material integrity or safety. These findings underscore the importance of continuous monitoring and the utility of the Digital E Dashboard in achieving and maintaining a sterile environment.

Suggestions
For future research, there are several suggestions that can be considered:

1. Enhanced Integration with Hospital Systems: Integrate the Digital E Dashboard with the hospital's central management system to enable comprehensive oversight and streamlined operations. This integration can facilitate automatic data logging, easier access to historical data, and improved alert management.

2. Regular Maintenance and Calibration: Schedule regular maintenance and calibration of sensors and the monitoring system to ensure sustained accuracy and reliability. Regular checks will help detect and rectify any issues early, maintaining the system’s efficiency.

3. Scalability and Customization: Consider scaling the system to cover additional sterilization rooms or other critical areas within the healthcare facility. Customizing the dashboard to meet specific needs of different departments can enhance its utility and effectiveness.

4. Data Security and Privacy: Implement robust data security measures to protect sensitive information collected by the Digital E Dashboard. Ensuring compliance with healthcare data protection regulations will safeguard patient and operational data.

References

